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Highlights  Abstract  

▪ Incorporating normalization and cosine 

penalty into sparse filtering enhances cross-

domain feature extraction consistency. 

▪ Integrating Bootstrap with maximum mean 

discrepancy improves domain difference 

assessment accuracy. 

▪ The proposed method effectively addresses 

variable working condition fault diagnosis 

challenges. 

 Traditional domain adaptation (DA) methods often encounter challenges 

with cross-domain feature extraction and the precise assessment of 

domain differences. To overcome these limitations, we introduce the 

Enhanced Sparse Filtering-Based Domain Adaptation (ESFBDA) 

method. This method distinguishes itself by enhancing sparse filtering 

(SF) with the integration of row-column normalization and a cosine 

penalty, specifically designed to minimize feature loss—a critical issue 

in existing DA techniques. Additionally, we employ Bootstrap 

resampling to refine domain distribution alignment, a novel step that 

boosts feature similarity and effectiveness in DA. This integrated 

approach ensures more accurate feature extraction, which is crucial for 

the classifier's fault detection capability. In our study, through two 

distinct experiments on Electro-Hydrostatic Actuator (EHA) internal 

leakage and bearing fault diagnosis, the ESFBDA method demonstrated 

remarkable accuracy, significantly surpassing traditional approaches and 

showcasing its robust applicability across varied diagnostic scenarios. 
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1. Introduction 

Deep learning-based diagnostic methods typically assume 

uniform working conditions for both training and testing data [2, 

17, 18, 35]. However, in real-world scenarios, variable working 

conditions can significantly impact diagnostic performance. 

Thus, addressing variable working conditions fault diagnosis is 

crucial. 

Domain adaptation (DA) has become a common solution for 

address the issue of variable condition fault diagnosis [15, 19, 

22, 26]. For example, An et al. [1] proposed a domain adaptation 

network based on contrastive learning (DACL), aimed at 

enhancing fault diagnosis under variable working conditions. 

Ding et al. [8] introduced a deep unbalanced domain adaptation 

(DUDA) framework for bearing fault diagnosis.  

The effectiveness of DA in fault diagnosis under variable 

working conditions depends on two key aspects [8]. Firstly, it is 

essential to extract features that remain consistent across 

different conditions. Sparse filtering (SF), an unsupervised 

technique, is commonly used for this type of feature extraction 

in variable condition fault diagnosis [30]. For instance, Ji et al. 

[13] introduced a parallel SF-based DA approach with an extra 
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normalization step, while Zhang and Yang  developed  

a reconstruction-oriented orthogonal SF-based technique to 

address redundant feature extraction. The existing 

normalization process in SF may have limitations when dealing 

with complex data structures. Particularly in high-dimensional 

and diverse datasets, this approach can sometimes 

overemphasize uniform standardization, potentially leading to 

the loss of key features or an inability to capture subtle data 

variations, thus affecting overall model performance. 

The second critical factor for DA in fault diagnosis is the 

accuracy in assessing domain discrepancies[12, 16]. Maximum 

mean discrepancy (MMD) is widely used for this purpose in SF-

based DA methods, notably for aligning features from the 

source domain with those in the target domain [5, 20, 24]. 

Prominent implementations of MMD include the hierarchical 

MMD by Sebastian et al. [21] , which has shown effectiveness 

in various bearing fault diagnoses, particularly under notable 

speed variations. Zhang et al. [29] developed the generalized 

normalized MMD, an innovative feature-learning approach 

designed for more unstable scenarios. However, when the data 

points are insufficient to represent the true distribution, or there 

are substantial differences between domains, the estimated 

MMD values may become inaccurate or unstable. 

To mitigate these challenges, this study unveils the enhanced 

sparse filtering-based domain adaptation (ESFBDA) strategy. 

ESFBDA incorporates bidirectional normalization and a cosine 

similarity-based penalty term within SF and employs Bootstrap 

resampling in MMD estimation. This refined strategy aims to 

preserve essential features for classification; reduce erroneous 

redundancy assumptions; and improve the accuracy and 

stability of MMD estimations in various domain discrepancy 

scenarios. It is worth mentioning that paper [32] introduces  

a supervised contrastive learning-based approach for rolling 

bearing fault diagnosis, distinguishing it from our method 

through different DA and feature extraction techniques. Paper 

[31]  introduces a digital twin-driven approach for fault 

diagnosis with simulated data, whereas our method uniquely 

enhances DA through advanced SF. The ESFBDA method is 

uniquely designed to enhance diagnostic accuracy by improving 

feature extraction consistency and DA precision. By integrating 

advanced normalization techniques and employing Bootstrap 

resampling in conjunction with MMD, our approach addresses 

critical gaps in existing DA methodologies. These innovations 

enable the ESFBDA method to effectively overcome the 

challenges of variable working conditions, setting a new 

standard for fault diagnosis accuracy and reliability. 

The main contributions of this work are as follows:  

1. We propose a novel enhanced SF approach by integrating 

row-column normalization and a cosine penalty. This 

enhancement aims to significantly reduce feature loss compared 

to traditional SF methods, thereby optimizing the feature 

extraction process for more accurate fault diagnosis.  

2. We introduce an innovative approach by incorporating 

Bootstrap resampling into the MMD algorithm, thereby 

enhancing the accuracy of domain discrepancy assessments, 

particularly effective in scenarios with limited sample sizes. 

3. Experiments were performed under variable working 

conditions and internal leakage scenarios in EHA systems to 

validate the effectiveness of the proposed ESFBDA method. 

The results consistently demonstrate its efficacy and reliability, 

outperforming established methods and conventional SF-based 

DA strategies. 

The structure of this paper is as follows: Section 2 offers an 

overview of SF and MMD. Section 3 details the implementation 

of the ESFBDA. Section 4 validates the ESFBDA method 

through diagnostic tests for internal leakage faults in Electro-

Hydrostatic Actuators (EHA) under varying conditions. Finally, 

Section 5 summarizes our findings and conclusions. 

2. Theoretical Background 

Before introducing the proposed ESFBDA method, an overview 

of some foundational theories relevant to ESFBDA is presented 

in this section. This includes SF and MMD. 

2.1. Sparse Filtering 

Standard SF is an efficient unsupervised feature learning 

algorithm [28]. Suppose there exists the following linear 

mapping: 

f𝑗
𝑖 = W𝑗

𝑇xi    (1) 

where the xi∈RN×1 is a training sample, W∈RN×L is weight 

matrix, f ji∈RL×1 corresponds to the jth feature of the i sample.  

In this case, these normalized features can be optimized. An 

l1-norm penalty is applied to enforce sparsity. For a dataset with 

M samples, the objective function of SF can be represented as 

follows: 
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𝐽𝑠𝑝(W) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑊

∑ ‖f̂ 𝑖‖
1

𝑀
𝑖=1 = ∑ ‖

f̃𝑖

‖f̃𝑖‖
2

‖
1

𝑀
𝑖=1         (2) 

where, M is the total number of samples, 𝑓𝑖 is the feature vector 

for the ith sample,  𝑓 𝑖 is the normalized version of 𝑓 𝑖  where 

normalization is done by the l1 norm across features for each 

sample, and ‖∙‖1 denotes the l1 norm that enforces sparsity. 

2.2. Maximum Mean Discrepancy 

Consider two distributions DS and DT, and our goal is to 

compute the MMD between them.  

DS={xS1, xS2, … xSn} and DT={xT1, xT2, … xTm}, where n and 

m are the sizes of the respective sample sets. 

The formula for MMD described as: 

MMD2(𝐷𝑆, 𝐷𝑇) = ‖
1

𝑛
∑ 𝜙(𝑥𝑆𝑖)𝑛

𝑖=1 −
1

𝑚
∑ 𝜙(𝑥𝑇𝑗)𝑚

𝑗=1 ‖
2

(3) 

where ϕ is a mapping function that maps samples into a feature 

space.  

3. The Proposed Method 

In this section, a novel fault diagnosis method in variable 

working conditions, ESFBDA, is introduced. The structure of 

this method is depicted in Fig. 1 and is comprised of three main 

steps: data preprocessing in the first step, the construction of the 

objective function in the second step, and the construction of the 

classifier in the third step. 

3.1. Data Preprocessing 

Assuming the collected signal is represented as g[n], where n = 

0, 1, 2, …, N-1, the signal is subsequently subjected to Short-

Time Fourier Transform (STFT). 

Following the procedure outlined in[10] , the time-

frequency signal x[m, k] is computed as follows: 

𝑥[𝑚, 𝑘] = ∑ 𝑋𝑀−1
𝑛=0 [𝑚𝑅 + 𝑛]𝑒−𝑗2𝜋𝑘𝑛/𝑁  (4) 

where x[m, k] represents the signal strength at frequency k 

within the m-th time window, M is the window length, and R is 

the step size between windows. 

Subsequently, normalization of the amplitude of the 

frequency-domain signal is performed. This step ensures 

uniform amplitude ranges across different signals, facilitating 

subsequent feature extraction, comparison, and analysis.  

𝑋[𝑚, 𝑘] =
𝑥[𝑚,𝑘]

𝐴max
   (5) 

where Amax represents the maximum amplitude of the time-

frequency signal, and X[m,  k] represents the amplitude of the 

normalized time-frequency signal.

 

Fig. 1. The framework of the proposed method.
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3.2. Construct the Objective Function for ESFBDA 

3.2.1. Enhanced Sparse Filtering 

 

Fig. 2. Schematic of the enhanced SF method. 

As shown in Fig. 2，Enhanced SF builds upon existing SF 

technology by introducing an additional normalization item and 

a similarity penalty item in different directions. The 

normalization item maps features onto a unit l2 norm circle, 

preserving key features and optimizing activation values, 

crucial for handling features of varying sizes. The cosine 

similarity penalty item maintains feature diversity and 

uniqueness by penalizing similarity among basis vectors in 

feature space, encouraging the selection of both relevant and 

varied features. 

Assuming data preprocessing yields a time-frequency signal 

X, it contains two similar yet differently distributed components: 

the source domain DS and the target domain DT. S=[(x1s, y1s),(x2s, 

y1s)…(xns
s,yns

s)]~(DS)ns denotes the labeled source domain 

dataset, and T=[(x1t, x2t …xnt
t) ~(DT)nt  represents the unlabeled 

target domain dataset. 

As shown in Fig. 3, first, normalize all columns using the l2-

norm, mapping the feature values to the unit l2-norm sphere, so 

that their squared activation values become 1: 

f̂ 𝑖 =
f𝑖

‖f𝑖‖
2

    (6) 

Then, normalize all rows equivalently using the l2-norm 

activation: 

f̃𝑗 =
f̂𝑗

‖f̂𝑗‖
2

    (7) 

 

Fig. 3. Additional normalization term of enhanced SF; (a) Column normalization, (b) Row normalization.

Afterwards, utilize l1-norm regularization to optimize the 

computed features, with the objective function for this direction 

being: 

𝐽𝑟𝑝(W) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑊

∑ ‖f̃𝑗‖
1

𝑁
𝑖=1 = ∑ ‖

f̂𝑗

‖f̂𝑗‖
2

‖
1

𝑁
𝑖=1      (8) 

Let sim(fu, fv) represent the similarity matrix among all basis 

vectors in the weight matrix W. The following form for the 

similarity penalty term can be employed. 

𝐽𝑠𝑖𝑚(W) = 𝛼 ∑ ∑ (1 − 𝑠𝑖𝑚(f u, f v))𝑀
𝑣=𝑢+1

𝑀−1
𝑢=1        (9) 

where f u and f v are the u and v rows of matrix W. 

As shown in Fig. 4, using cosine similarity to measure the 

similarity between f u and f v. 

𝑠𝑖𝑚(f u, f v) = 𝑐𝑜𝑠( f u, f v)   (10) 

When two basis vectors are more similar, the cosine 

similarity approaches 1. When they are orthogonal to each other, 

the cosine similarity approaches 0. And when they are 

completely dissimilar, the cosine similarity approaches -1. 
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Fig. 4. Similarity penalty term of ESFBDA. 

The final objective function for enhanced SF is obtained by 

integrating Eq. (2), (8) and (9) as follows: 

𝐽𝑠𝑟𝑝𝑠(W) = 𝐽𝑠𝑝(W) + 𝜆𝐽𝑟𝑝(W) + 𝛼𝐽𝑠𝑖𝑚(W) = ∑ ‖
f̃𝑗

‖f̃𝑗‖
2

‖
1

𝑀
𝑖=1 +

𝜆 ∑ ‖
f̂𝑖

‖f̂𝑖‖
2

‖
1

𝑁
𝑖=1 + 𝛼 ∑ ∑ (1 − sim(f u, f v))𝑀

𝑣=𝑢+1
𝑀−1
𝑢=1          (11) 

where λ≥0 determines the weight between these two terms, α is 

a regularization parameter used to control the strength of the 

similarity penalty. 

The innovative aspect of Enhanced SF lies in its 

sophisticated approach to addressing the challenges of fault 

diagnosis under variable working conditions, where traditional 

SF techniques may fall short. The key innovations of Enhanced 

SF include the integration of bidirectional normalization and  

a cosine similarity penalty. This combination aims to preserve 

essential features while minimizing feature loss that often 

occurs with conventional SF methods. Bidirectional 

normalization ensures that features are scaled appropriately, 

both row-wise and column-wise, to maintain their relative 

importance and to facilitate a more consistent feature extraction 

across different domains. The cosine similarity penalty 

discourages redundancy by penalizing similarity among 

features, encouraging the selection of diverse and informative 

features. 

Compared to traditional SF technology, which primarily 

focuses on feature extraction without explicitly addressing the 

issue of feature redundancy or the need for feature consistency 

across domains, Enhanced SF introduces mechanisms to ensure 

that the extracted features are both relevant and varied, 

enhancing the model's ability to generalize across different 

working conditions. This is crucial for fault diagnosis 

applications where the operational conditions can vary widely, 

and the ability to accurately diagnose faults under such 

conditions is essential for maintaining system reliability and 

performance. 

3.2.2. MMD with Bootstrap Resampling 

Additionally, Bootstrap resampling into MMD, where multiple 

new datasets are created by randomly selecting data points with 

replacements from the original data. MMD is then computed for 

each of these resampled datasets, resulting in a distribution of 

MMD values. The algorithm schematic is depicted in Fig. 5. 

The specific steps are as follows: 

Step 1: Conduct Bootstrap sampling by independently 

drawing samples with replacement from DS and DT, 

constructing new sample sets Sbootstrap and Tbootstrap. 

Step 2: For each Bootstrap sample set Sbootstrap and Tbootstrap , 

compute the corresponding MMD value: 

MMDbootstrap
2 (𝐷𝑆, 𝐷𝑇) = ‖

1

𝑛
∑ 𝜙(𝑆bootstrap,𝑖)𝑛

𝑖=1 −
1

𝑚
∑ 𝜙(𝑇bootstrap,𝑗)𝑚

𝑗=1 ‖
2

(12) 

Step 3: Increase the bootstrap iterations incrementally, 

assessing the MMD estimate's variance after each set. Cease 

iterations when the variance change between sets falls below a 

pre-determined, small threshold value, such as 0.1% of the 

initial variance. This threshold ensures sufficient stability in the 

MMD estimate without unnecessary computation. 

Step4: From the distribution of bootstrap MMD values, 

compute the confidence intervals (95% CI): 

𝐿𝑚𝑚𝑑(W) = [𝜇̂MMD − 1.96 ×
𝜎̂MMD

√1000
, 𝜇̂MMD + 1.96 ×

𝜎̂MMD

√1000
]      (13) 

where 𝜇̂MMD  is the mean of MMD values and 𝜎̂MMD  is the 

standard deviation.  

It is evident that if the confidence interval is larger, it implies 

higher uncertainty in the estimation of MMD, leading to a less 

precise assessment of differences between probability 

distributions. Conversely, when a smaller confidence interval is 

used, greater confidence in the stability of the estimation is 

achieved, indicating smaller disparities between the 

distributions. 

By combining the enhanced SF term with the domain 

distribution discrepancy alignment term, the following 
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objective function can be obtained. 

𝐿(W) = 𝐿𝑠𝑟𝑝𝑠(W) + 𝛽𝐿𝑚𝑚𝑑(W)  (14) 

where the tradeoff between two terms is controlled by β > 0. 

Ultimately, by solving Eq. (1) under the constraints of the 

objective function Eq. (14), the feature matrix is obtained. 

 

Fig. 5. The algorithm schematic for Bootstrap resampling into 

MMD. 

3.3. Fault Diagnosis 

In the proposed method, the softmax regression classifier is 

employed due to its proficiency in handling multi-class 

classification, essential for accurate fault diagnosis across 

various conditions [7, 14, 27]. This classifier, with its 

probabilistic output, offers interpretability in results, providing 

both classifications and their confidence levels. Its 

compatibility with the feature set extracted through the 

ESFBDA method ensures effective and accurate fault 

identification under various working conditions. 

The training data Tr sourced from the dataset is utilized to 

train the softmax regression classifier. Subsequently, the 

efficacy of the softmax regression classifier is assessed using 

the test data Te that encompasses all categories.  

𝑇𝑟 = 𝑍(W ⋅ M𝑆)𝑇𝑒 = 𝑍(W ⋅ M𝑇)  (15) 

where Z represents Z-score normalization, and W is the weight 

matrix learned.  

Furthermore, the trained softmax regression classifier is 

utilized to diagnose samples from the target dataset. 

In conclusion, the proposed algorithm can be summarized as 

an algorithm table. 

 

Algorithm: ESFBDA 

Input: Sample set X, including the source domain data XS and the target domain data XT, source labels YS, 

weight parameter λ, regularization parameter α, and β. 

Output: Predicted labels for each test sample in the target domain XT. 

Train: 

1. Calculate the column-wise l2-norm of data X using Eq. (6), followed by the row-wise l2-norm of the 

obtained result. 

2. Calculate the row-wise l2-norm of data X, followed by the column-wise l2-norm of the obtained result. 

3. Apply the l1-norm using Eq. (7) to the features obtained in steps 1 and 2. 

4. Compute the similarity between all base vectors in X.  

5. Calculate the similarity penalty term based on the computed similarities using Eq. (9). 

6. Calculate the bootstrap MMD value of X according to Eq. (13).  

7. Integrate the results from steps 3 and 6, constructing the final objective function based on Eq. (11). 

8. Employ XS and XT as the input data for ESFBDA, and minimize the objective function from step 8 to 

obtain the weighted matrix W. 

9. Compute training data Tr and test data Te for the softmax classifier. 

Classify: 

Employ the softmax classifier to predict labels YT for unlabeled target data XT. 

4. Experiment Results and Analysis 

…

Original sample

Bootstrap samples

Mean of MMD
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4.1. Case 1: EHA Internal Leakage Fault Diagnosis 

4.1.1. Data Preparation 

To ascertain the efficacy of the ESFBDA method in variable 

working condition fault diagnosis, an EHA internal leakage test 

bench was constructed, as shown in Fig. 6. 

The motor was then operated at speeds of 72,000 rpm, 

144,000 rpm, and 216,000 rpm, respectively, while achieve oil 

discharge rates of 3 mL, 5 mL, and 8 mL under different speeds. 

These were respectively calibrated as mild, moderate, and 

severe internal leakages at each speed. 

Therefore, in this experimental study, three different EHA 

operating speeds were set (72,000 rpm, 144,000 rpm, 216,000 

rpm), designated as conditions 1, 2, and 3, respectively. Under 

these conditions, four levels of leakage faults (labeled A, B, C, 

D) were introduced, where A represents no leakage, and the 

severity increases from A to D. 

 

Fig. 6. Simulation test bench for internal leakage. 

Six variable working conditions fault diagnosis experiments 

were designed, ranging from a single-source domain to a single-

target domain, and detailed information for each condition is 

presented in Table 1. In each DA task, for example, case 1-2 

signifies that dataset 1 was used as the source domain for feature 

learning, and health condition diagnosis was performed on 

samples from the target domain 2. 

Table 1. Description of planetary leakage dataset (single source domain). 

Transfer 

Task 

Source 

Domain (rpm) 

Target 

Domain (rpm) 

Source 

Samples 

Target 

Samples 

Health 

Conditions 

1-2 72000 144000 400 80 

A, B, C, D 

1-3 72000 216000 400 80 

2-1 144000 72000 400 80 

2-3 144000 216000 400 80 

3-1 216000 72000 400 80 

3-2 216000 144000 400 80 

Furthermore, experiments were also conducted to select two 

source domains to predict the health condition of a target 

domain. There are three tasks in this experiment: 12-3, 13-2, and 

23-1. Specific details of the experiment are presented in  

Table 2.

Table 2. Description of planetary leakage dataset (double-source domains). 

Transfer 

Task 

Source 

Domain (rpm) 

Target 

Domain (rpm) 

Source 

Samples 

Target 

Samples 

Health 

Conditions 

12-3 72000&144000 216000 200×2 80 

A, B, C, D 13-2 72000&216000 144000 200×2 80 

23-1 144000&216000 72000 200×2 80 

The signals collected by the sensors were input into a data 

acquisition instrument, and the sampling frequency was set at 

25600 Hz. In the experiment, each state comprised 20 samples, 

with each sample containing 51200 data points. 

First, under three distinct operating conditions, the three-

phase current signals of the servo motor were collected, as 

illustrated in Fig. 7. These signals serve as a comprehensive 

representation of the system's electrical behavior during its 

operation. 

 

Electromotor Pump Throttle globe valve Piston rod

Actuator Pressurized tank Nitrogen spring
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Fig. 7. Schematic representation of three-phase current signals 

from the servo motor; 'u,' 'v,' and 'w' represent the phase 

currents of the EHA motor. 

Furthermore, the peak values of the three-phase current 

waveforms were separately extracted. As depicted in Fig. 8, this 

gives us a time-series curve showing the evolution of the three-

phase current peaks. It's an essential step because these peak 

values can provide insights into the motor's operational 

dynamics under different conditions.  

 

Fig. 8. Extraction of peak values from three-phase current 

signals. 

Fig. 9 presents the envelope lines of current peak values for 

various leakage amounts under a particular operating condition. 

An interesting observation from the Fig. 9 is the subtle changes 

in the current peaks' progression, suggesting different health 

conditions of the system. However, discerning these variations 

merely by visual inspection proves challenging, emphasizing 

the need for more sophisticated analysis techniques to precisely 

identify different system health statuses. 

 

Fig. 9. Peak current signal for different leakage levels under a 

specific operating condition. 

The peak current signal was subjected to STFT to extract 

time-frequency features. As shown in Fig. 10, the STFT analysis 

results of the peak current signal for a sample under healthy 

conditions at 72000 rpm were presented in the form of a heat 

map. The features extracted using the STFT method are quite 

pronounced. Consequently, the time-frequency analysis results 

of the current peak signal are utilized as input for subsequent 

analysis. 
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Fig. 10. Time-frequency maps of three-phase current. 

4.1.2. Comparison Methods and Parameter Selection 

To accentuate the benefits of the method we've proposed for 

diagnosing EHA leakage faults across diverse scenarios, a series 

of comparative experiments were initially set up to highlight the 

innovative aspects of our approach. This was complemented by 

juxtaposing our method against other avant-garde techniques in 

variable working conditions diagnostics. (Detailed methods 

follow). 

1. Sparse filtering domain adaptation (SFDA):  

A foundational method that combines traditional MMD for DA 

with unmodified SF for feature extraction. SFDA serves as  

a baseline, allowing us to assess the fundamental effectiveness 

of SF in conjunction with standard MMD in fault diagnosis. 

2. Sparse Filtering with Bootstrap Maximum Mean 

Discrepancy (SFBDA): Enhances DA through the use of MMD 

optimized by Bootstrap resampling, followed by feature 

extraction employing conventional SF techniques. This method 

highlights the impact of Bootstrap optimization on the accuracy 

of MMD calculations, thereby potentially improving DA 

effectiveness without altering the SF component. 

3. Reconstruction sparse filtering domain adaptation 

(RSFDA) [34]: Utilizes MMD for DA while incorporating soft 

reconstruction penalties  (SRP) into the SF process for feature 

extraction. RFSFDA explores the potential of SRP to enhance 

feature representation by adding reconstruction constraints, 

offering an advanced approach to leveraging SF for improved 

DA. 

4. 𝒜  distance and sparse filtering domain adaptation 

(ASFDA) [11]: Employs 𝒜  -distance to measure the 

discrepancy between domains, combined with SF for feature 

extraction. ASFDA investigates the utility of 𝒜 -distance as an 

alternative metric for quantifying domain differences, aiming to 

complement SF in the domain adaptation process. 

5. l1/l2  norm distance and sparse filtering domain 

adaptation l1/l2-SFDA [25]: Features an enhanced SF network 

that applies l1/l2-norm adjustments for feature extraction, with 

MMD assessing domain discrepancies. l1/l2-SFDA examines the 

benefits of combining norm-based modifications with SF to 

enhance DA, focusing on the advantages of parallel positive-

side normalization. 

6. Enhanced sparse filtering with maximum classifier 

discrepancy (SFMCD)[3]: Integrates the Wasserstein distance 

for minimizing domain differences, paired with SF for feature 

extraction. SFMCD represents an innovative approach to 

domain adaptation, leveraging advanced distance measures to 

refine the alignment between source and target domains, 

thereby potentially enhancing the effectiveness of SF. 

In our comparative analysis, SFDA and SFBDA serve to 

evaluate the core improvements to SF and MMD, establishing  

a baseline for the effectiveness of traditional DA techniques. 

Conversely, RSFDA, ASFDA, l1/l2-SFDA, and SFMCD are 

employed as benchmarks against other state-of-the-art domain 

adaptation methods in variable working conditions diagnostics, 

showcasing a range of optimized sparse filtering-based 

approaches. This comprehensive comparison aims to underline 

the superiority and innovation of our proposed method in 

addressing the challenges of fault diagnosis across diverse 

operational scenarios. 

In our detailed analysis, each signal sample is meticulously 

composed of 76,800 data points. These samples are normalized 

to a uniform range between 0 and 1 to ensure consistency across 

our dataset. To address inherent variability introduced by 

sample distribution and the initial setup of the neural network, 

meticulous adjustments were made. We selected softmax 

regression as our classification method, due to its robustness in 

handling multi-class classification challenges, which are 

prevalent in the field of fault diagnosis.  

The determination of our network parameters, specifically 

the regularization parameters λ and α, both set to 1, and the 

Domain Adaptation (DA) parameter β, set to 1000, was 

influenced by a combination of theoretical frameworks and best 
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practices established in previous research. This careful selection 

process aimed to optimize our model's ability to generalize 

across varied operational scenarios, ensuring high accuracy and 

reliability in fault detection and diagnosis.  

Our approach was further validated through an extensive 

review of relevant literature, encompassing both contemporary 

studies and foundational works in the field. This review helped 

us to align our methodology with the most effective and 

recognized standards in fault diagnosis research, as cited in 

references [9, 33]. By integrating these insights with our 

empirical observations, we developed a model that not only 

adheres to the established norms but also pushes the boundaries 

of what is possible in fault diagnosis through innovative 

parameter optimization. 

4.1.3. Effectiveness Analysis 

4.1.3.1. Analysis of Single-source Domain Results 

In the context of fault diagnosis under variable working 

conditions, we conducted experiments transitioning from  

a single-source domain to a single-target domain. Six sets of 

experiments were carried out, with the results depicted Fig. 11, 

representing the averages of 20 random trials. Table 3 provides 

a detailed overview of the average diagnostic outcomes for each 

method under six different scenarios. 

Compared to the SFDA method, our proposed ESFBDA 

strategy significantly improved the average diagnostic accuracy 

by 23.85%, reaching 99.12%. This result highlights limitations 

in the traditional SFDA method in capturing diagnostic 

information from multi-condition data adequately. 

Fig. 11 clearly shows that the diagnostic results of the 

SFBDA method are substantially higher than those of the SFDA 

method, with an improvement of 13.34% according to the 

results in Table 4. This indicates that introducing joint MMD 

and Bootstrap methods for DA is highly effective. The 

combined use of MMD and Bootstrap enhances statistical 

robustness by allowing random sampling with replacement 

from the original dataset and in-depth analysis of multiple sub-

samples, thus reducing errors due to data variations. However, 

compared to the ESFBDA proposed, the diagnostic 

performance of SFBDA remains inferior. Therefore, improving 

SF indeed plays a crucial role in enhancing diagnostic accuracy. 

The RSFDA method emphasizes balancing diversity and 

consistency, achieving an average accuracy of 93.89%. It 

focuses on ensuring feature diversity across different domains 

while emphasizing the consistency of these features among 

various domains to ensure better generalization of the model in 

different environments. However, RSFDA mainly emphasizes 

pre-adaptation of reconstruction coefficient filtering, which 

may result in specific types of feature loss.  On the other hand, 

ESFBDA reduces redundancy and loss during feature extraction 

by combining row-column normalization and cosine similarity 

penalties, thus capturing fault information more accurately. 

Therefore, ESFBDA outperforms RSFDA in terms of accuracy. 

In addition, Table 3 demonstrates that ASFDA achieves an 

accuracy of 94.71%, which is 4.41% lower than ESFBDA. The 

difference in performance is attributable to the methodological 

characteristics of ASFDA, particularly its adaptation strategy in 

handling domain-specific information when predicting the 

target domain within a single-source domain experiment. This 

approach can occasionally result in information confusion 

among the source domains. On the other hand, ESFBDA uses 

Bootstrap resampling to optimize MMD for more precise DA, 

ensuring a more accurate alignment of features between source 

and target domains.  

Moreover, the fault diagnosis results for the SFMCD method 

are also presented in Fig. 11, achieving an accuracy of 95.38%.  

This is attributed to the SFMCD method reducing the 

distribution difference between the source and target domains 

using Wasserstein distance and adversarial training strategies. 

Despite its outstanding performance in some aspects, ESFBDA 

employs Bootstrap resampling optimization MMD for DA, 

ensuring a more accurate alignment of features between source 

and target domains. This integrated strategy provides ESFBDA 

with a solid foundation in DA, balancing feature diversity and 

domain consistency. Therefore, ESFBDA significantly 

outperforms SFMCD in terms of accuracy. 

Furthermore, the l1/l2-SFDA method achieves an average 

fault diagnosis accuracy of 96.54%, a notable improvement of 

7.96 % compared to SFBDA's 88.61%. This result highlights 

the positive impact of positive-side enhancement on the 

generalization performance of DA models. While the 

performance of l1/l2-SFDA is slightly below our proposed 

ESFBDA, it suggests that focusing solely on positive-side 

features may not fully capture diagnostic features in multi-
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condition data. This implies that, apart from emphasizing 

positive-side features, incorporating Cosine similarity to 

eliminate similar features is equally vital, thereby enhancing the 

accuracy of variable working conditions fault diagnosis and 

model generalization performance. 

 

Fig. 11. Variable working conditions fault diagnosis outcomes 

of the proposed approach versus reference methodologies 

(sourced from a singular domain). 

Table 3. The accuracy comparison results of the method 

proposed in this paper and various other methods are presented 

herein (sourced from a singular domain). 

Method Average SD 

SFDA 75.27 0.69 

SFBDA 88.61 0.83 

RSFDA 93.89 0.47 

ASFDA 94.71 0.41 

SFMCD 95.38 0.27 

l1/l2-SFDA 94.72 0.33 

ESFBDA 99.12 0.77 

In our comparative analysis, the ESFBDA method 

demonstrates significant improvements in diagnostic accuracy 

over traditional approaches, highlighting its effectiveness in 

overcoming the limitations associated with the normalization 

process in sparse filtering, especially within high-dimensional 

and diverse datasets. By integrating row-column normalization 

and a cosine similarity penalty, our method effectively preserves 

essential features and captures subtle data variations, which are 

often lost in traditional normalization processes. This approach 

ensures a more nuanced understanding and processing of 

complex data structures, thereby enhancing the model's 

performance across variable working conditions. The results 

from our experiments, as illustrated in Fig. 12 and detailed in 

Table 4, empirically validate this improvement, showcasing 

ESFBDA's capability to mitigate feature loss and 

overgeneralization, issues that are prevalent in conventional 

sparse filtering applications. 

To compare the feature extraction capabilities of various 

methods under unknown conditions, we employed t-distributed 

stochastic neighbor embedding (t-SNE) [4] for feature 

dimensionality reduction and visualization. We used the Load 

3-2 experiment as an example to depict the features in a three-

dimensional space. As illustrated in Fig. 13, the features 

classified under the SFDA method are intermixed, with 

substantial overlap in the distribution boundaries of different 

categories, which compromises classification accuracy. 

Conversely, while the results from SFBDA, RSFDA, and 

ASFDA showed a more organized distribution, some confusion 

still exists. This suggests that traditional SF feature extraction 

and MMD domain adaptation methods are limited when 

extracting diagnostic knowledge across conditions. SFMCD 

and l1/l2-SFDA demonstrated relatively better classification 

performance, albeit with some instances of misclassification. 

Our proposed method correctly categorized all samples, 

underscoring its superior fault feature extraction across different 

speeds. This further validates the efficiency and robustness of 

our approach in diagnosing faults under variable working 

conditions. 

 

Fig. 13. Visualization results of load 3-2 fault diagnosis 

experiment. 
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Fig. 14. Confusion matrix illustration of our method in load 3-

2 experiment. 

Fig. 14 displays the confusion matrix of the ESFBDA 

method in a load 3-2 experiment. In the confusion matrix, 

misclassifications between states B and D can be observed, 

while there are no misclassifications among the other states. 

This indicates the method's strong performance in classification. 

Reflecting upon the consistent discussions and findings, the 

visual interpretation of the confusion matrix accentuates the 

commendable capability of the proposed method in diagnosing 

faults across varying conditions. 

4.1.3.2. Analysis of Dual-source Domain Results 

To further validate the effectiveness of the proposed method, 

two source domains were selected for predicting the health 

condition of a target domain. Therefore, there were three tasks 

in this experiment: 12-3, 13-2, and 23-1. Table 5 lists the 

diagnostic results for each method. 

Table 5. The accuracy comparison results of the method 

proposed in this paper and various other methods are presented 

herein (sourced from a dual domain). 

Method Average SD 

SFDA 78.46 0.37 

SFBDA 92.01 0.24 

RSFDA 94.54 0.65 

ASFDA 96.15 0.33 

SFMCD 96.66 0.37 

l1/l2-SFDA 98.34 0.39 

ESFBDA 99.91 0.09 

The experimental results are shown in Fig. 15, and the 

average diagnostic accuracy is listed in Table 5. We can observe 

that ESFBDA achieves an average fault diagnosis accuracy of 

99.91%, which is 0.79% higher than methods that learn fault 

features from a single domain. Similar improvements are 

observed with other comparative methods. This suggests that 

integrating knowledge from two domains into one domain can 

more effectively leverage multi-source information. Different 

operating conditions may lead to different data distributions, 

and by merging these distributions, features, and patterns can be 

captured more comprehensively. This information fusion 

provides additional background knowledge, contributing to 

improved model accuracy. 

 

Fig. 15. Variable working conditions fault diagnosis outcomes 

of the proposed approach versus reference methodologies 

(sourced from a dual domain). 

The t-SNE method was also employed to visualize the 

diagnostic results of load 23-1. From the graph, it is evident that 

under the learning of two source domains, all methods exhibit 

clearer classification, with greater separation between different 

categories. The method presented in this paper demonstrates 

exceptional performance in visual classification. It consistently 

outperforms other methods and achieves highly accurate results.  

This visual result further emphasizes that by integrating 

knowledge from two source domains into one domain, it is 

possible to better distinguish different categories and enhance 

the model's classification performance. This also demonstrates 

the unique advantages of the proposed method in addressing 

variable working conditions diagnostic problems. 

Fig. 17 presents the diagnostic results of the ESFBDA 

method in the Load 23-1 experiment through a confusion matrix. 

It is evident from the confusion matrix that all four classes A, B, 

C, and D have been successfully classified with an accuracy of 

100%. This result is consistent with the information shown in 

20 0 0 0

0 19 0 1

0 0 20 0

0 0 0 20

A B C D

A

B

C

D

P
re

d
ic

te
d
 l

ab
el

Truel label

12-3 13-2 23-1
40%

50%

60%

70%

80%

90%

100%

A
cc

u
ra

cy

Domain adaptation scenarios

 SFDA

 SFBDA

 RSFDA

 ASFDA

 SFMCD

 l1/l2-SFDA

 ESFBDA



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 26, No. 3, 2024 

 

Fig. 16. It further emphasizes the efficiency and accuracy of the 

ESFBDA method in diagnostic tasks. 

 

Fig. 16. Variable working conditions diagnostic results of 

various methods in the experiments for Load 23-1 under small 

sample conditions. 

 

Fig. 17. Confusion matrix illustration of our method in load 

23-1 experiment. 

4.1.3.3. Analysis of Diagnostic Results with Different 

Source Domain Sample Sizes 

In practical engineering applications, labeled EHA monitoring 

data is often scarce. Therefore, fault diagnosis models for 

variable working conditions scenarios need to maintain high 

diagnostic accuracy even with limited samples. To assess the 

diagnostic performance of our proposed method under small-

sample conditions for unknown conditions, the load 2-3 

experiment was selected, and our proposed method,  along with 

six comparative methods, was trained using varying 

percentages of training samples. Each result is the average of 20 

random experiments, and the final diagnostic results are shown 

in Fig. 18. The training sample ratio represents the percentage 

of each class's training samples, for example, a 90% training 

sample ratio means that each class has 90% of the total training 

samples. 

The results demonstrate that as the number of training 

samples decreases, the diagnostic accuracy of all methods for 

variable working conditions scenarios decreases to some extent. 

Our proposed ESFBDA method consistently exhibits the 

highest diagnostic accuracy under small-sample conditions. As 

the number of training samples decreases, ESFBDA shows the 

smallest decline in diagnostic accuracy. Even with only 50% of 

the training samples, it still achieves a diagnostic accuracy of 

95.5% with a standard deviation of only 1.5%. The experiment 

shows that our method excels in small-sample variable working 

conditions fault diagnosis. 

 

Fig. 18. Variable working conditions diagnostic results of 

various methods in the experiments for Load 2-3 under small 

sample conditions. 

4.2. Case 2: bearing fault diagnosis 

4.2.1. Data Preparation 

 

Fig. 18. Case western reserve university bearing data source 
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To further validate the effectiveness of the ESFBDA method 

in addressing fault diagnosis under Variable Working 

Conditions, we utilized a dataset derived from bearing tests, as 

depicted in Figure 18, featuring the drive end bearing SKF6205-

2R [6]. The bearings were artificially damaged on the inner race, 

ball, and outer race through electrical discharge machining. 

Vibration signals were collected at a sampling rate of 12 kHz 

and a rotational speed of 1797 rpm under load conditions of 0, 

1, 2, and 3 HP. 

The detailed data selected, as outlined in Table 6, considers 

four health states: (1) Normal Health (NH); (2) Outer Race Fault 

(OF); (3) Inner Race Fault (IF); and (4) Ball Fault (BF), with  

a damage diameter of 7 mils. 

Table 6. The description of bearing data. 

Load (HP) Fault size (mil) Fault location 

0 

7 NH, IF, BF, OF 
1 

2 

3 

4.2.3. Effectiveness Analysis 

The selection of comparison methods and parameter settings for 

our analysis adheres to the protocol established in '4.1.2 

Comparison Methods and Parameter Selection.' The nine 

transfer tasks, including task 0-1 which moves from 0hp to 1hp 

load conditions, rigorously evaluate each method's ability to 

adapt diagnostic performance across varying operational loads, 

a fundamental requirement for practical fault identification in 

industry settings. 

Table 7. The accuracy comparison results of the method 

proposed in this paper and various other methods are presented 

herein. 

Method Average SD 

SFDA 82.24 2.35 

SFBDA 86.74 1.29 

RSFDA 94.48 1.27 

ASFDA 96.20 0.65 

SFMCD 97.05 0.73 

l1/l2-SFDA 98.49 0.59 

ESFBDA 99.52 0.27 

 

Fig. 19. Variable working conditions fault diagnosis outcomes 

of the proposed approach versus reference methodologies. 

The ESFBDA method, as illustrated in Table 7 and Fig. 19, 

consistently outperforms competing methods with an 

impressive average accuracy of 99.52% and a notably low 

standard deviation of 0.27. This remarkable consistency in 

achieving high diagnostic accuracy across various operational 

loads demonstrates the method’s robustness and reliability, key 

for dependable real-time monitoring and fault diagnosis in 

industrial applications. 

Moreover, the method's excellent performance is indicative 

of its sophisticated ability to capture and classify fault 

characteristics accurately, regardless of the load transition 

complexity. This is supported by its leading performance across 

all individual tasks in the dataset, demonstrating ESFBDA's 

advanced feature extraction and domain adaptation capabilities 

that contribute to its high diagnostic accuracy. 

In summary, the results solidifies the ESFBDA method's 

standing as a significant advancement in the domain adaptation 

landscape for fault diagnosis. The method's robust performance 

across variable working conditions, demonstrated through 

comprehensive experimental validation, positions ESFBDA as 

a leading approach for ensuring the reliability and safety of 

mechanical systems in the face of diverse operational 

challenges. 

5. Conclusions 

This paper introduces a variable working condition fault 

diagnosis method named ESFBDA, offering higher accuracy in 

cross-working condition fault diagnosis compared to existing 

SF-based domain adaptation methods. ESFBDA enhances SF 
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technology by incorporating l2 normalization and similarity 

penalty items, reducing feature loss. Additionally, it optimizes 

MMD using Bootstrap Resampling for more accurate domain 

difference assessment. Extensive experiments on an EHA 

internal leakage fault dataset demonstrate its ability to 

accurately extract similar features across different working 

conditions and assess domain differences effectively, thus 

improving variable working condition fault diagnosis. 

Specifically, the application of our ESFBDA method to the EHA 

dataset underscores its significant impact on enhancing fault 

diagnosis for electro-hydraulic servo systems. This approach 

not only showcases the method's effectiveness in a real-world 

context but also illuminates its potential to advance fault 

diagnosis techniques, ensuring the reliability and safety of such 

critical systems in the industry. 

As for future avenues of exploration, there is potential in 

amalgamating conditional MMD or multi-kernel MMD with the 

ESFBDA model. Such integration might unlock further 

enhancements in the method's overall performance and 

robustness, solidifying its practical applications in pertinent 

areas. In addition, future work will critically examine the 

distinct impacts of column and row normalization in the 

ESFBDA method, aiming to refine SF for fault diagnosis. This 

exploration is essential for advancing DA techniques and 

optimizing performance in varying conditions.
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